My main research areas are the risk management for power utility companies, bank, and insurance companies, modeling of electricity markets, valuation and hedging of derivatives (interest-rate, credit- and energy-related), optimal portfolio allocation under frictions.
“Big risks”: perceptions, management and neuralgic societal risks in the 21st century (with Achim Goerres and Andreas Niederberger)
This project is about the ways in which the public deals with neuralgic societal risks such as climate change, demographic change and state deficits in the 21st century (“big risks”). It aims to answer overarching questions from the three disciplinary perspectives of practical philosophy, political sociology and financial mathematics, all based at the interdisciplinary research cluster “Transformation of Contemporary Societies” at the University Duisburg-Essen.
Practical philosophy considers the epistemic difficulties of “knowing” risks and offers normative risk assessments and reactions to them. Political sociology studies the intersection between the political and the societal spheres and is equipped to deal with the effects of social and political positions on individual perceptions. Financial mathematics offers tools for the risk management of quantifiable risks and allows designing instruments for diversification and hedging of risks.
Whereas risk is a central concept in economics and business studies, its manifestations in a broader sense are rarely studied from a rigorous multi-disciplinary angle.
Analytics and Empirics of Intraday Trading of Electricity
(with Karsten Urban and Christoph Weber)
This project studies the empirics of electricity intraday markets using data on quarter-hour products. We will discuss the development of trading strategies and the construction of optimal portfolios for different market participants. We also aim to develop real-time trading strategies for practical applications. In addition, regulatory aspects for the generation of an efficient electricity markets will be investigated.
Model Risk in Energy Markets
While model risk has been studied in some detail in the context of financial mathematics model risk in the context of energy markets has been widely neglected. The aim of the project is to raise awareness of model risk and to provide tools for its quantification in energy markets. In particular, we consider the valuation of energy spread options which represent the financial alternative to investing in a (gas – or coal-fired) power plant. The valuation of such plants is important for the German market as they are regarded as bridging technology to provide capacity until electricity generated from renewable sources can be stored efficiently. We intend to apply our approach to other pricing question within the electricity market with a focus on short-term trading.
Structural Equilibrium Pricing Models
The aim of the project is the development and use of structural models for electricity prices, which will allow quantitative analysis for pricing and hedging of various electricity derivatives. We will also use the modeling approach to study the effect of market coupling on the prices of these derivatives.
Quantitative Climate Finance
Climate Change features a variety of uncertainties. Besides the physical implications, e.g. increased frequency and severity of storms, floods, draughts and extreme weather events, there are many economically relevant uncertainties in terms of political, social and regulatory reactions.
In particular, the quantification of climate risk in a probabilistic framework carries high uncertainties for probabilities of future developments (scenarios).
As a consequence, quantitative approaches are highly controversial in the academic and in particular in the public discussion. So far a systematic approach to the various degrees of uncertainty (ambiguity) is. We will provide a systematic classification of uncertainty for the discussion of the consequences of climate change and feed it in the discussion of the wider public.
Our focus will be the analysis of the consequences of the change of the world economy in the wake of climate change to aspects of financial markets. As during the climate summit 2015 in Paris far-reaching decisions towards a limitation of the global warming to the 2 degree Celsius have been taken, we will investigate the change towards a low-carbon world economy. So, we will investigate the consequences for financial institutions, investors and the regulation of financial and insurance markets.
A quantitative investigation needs a pricing of the economic costs of the carbon emissions to extend the standard pricing and risk management approaches. If such a pricing is done in the current literature typically CO2 permit prices are used and thus the price is too low by a significant margin. The basis of our investigation is therefore the construction of a carbon (-price) index, which will include a thorough treatment of the various aspects of uncertainty related to the modelling of climate change. In doing so we use a decision-theoretic approach motivated from the asset pricing literature. In particular, it is necessary to use a realistic modelling of risk preferences as well as an explicit inclusion of the aversion towards ambiguity. Furthermore, in our analysis we separate risk and time preferences in the spirit of the approach of (Epstein-Zinn).
As todays climate-policy decision will have long-term consequences, the above separation allows to appreciate the importance of the appropriate discount factor for the impact of these future consequences.
Our Index can be used to investigate the implication for capital markets and financial institutions of a more rigid climate policy. We will consider the valuation of companies on the capital markets, the analysis of companies towards their creditworthiness, and the structuring of carbon-friendly portfolios in asset allocation. In addition, we can quantify a carbon risk premium for companies, which can be used in terms of the portfolio management for equity as well as bond portfolios. Finally, we will be able to get a better view on the systemic risk that will be implied by a carbo-friendly revaluation of companies.
This survey article reviews the current state of literature on how structural models of credit risk are employed to model the impact of climate risk on financial markets. We discuss how the two prominent types of climate risk, physical and transition risk, are captured by the seminal Merton model and its well-known extensions. Theoretical and practical advantages and drawbacks are worked out and an outlook on possible model improvements is provided.
Using Credit Default Swap spreads, we construct a forward-looking, market-implied carbon risk factor and show that carbon risk affects firms’ credit spread. The effect is larger for European than North American firms and varies substantially across industries, suggesting the market recognises where and which sectors are better positioned for a transition to a low-carbon economy. Moreover, lenders demand more credit protection for those borrowers perceived to be more exposed to carbon risk when market-wide concern about climate change risk is elevated. Finally, lenders expect that adjustments in carbon regulations in Europe will cause relatively larger policy-related costs in the near future.
We examine if the trading activity on the German intraday electricity market is linked to fundamental as well as market-induced factors. Thus, we propose a novel point process model in which the intensity process of order arrivals consists of a self-exciting term and additional exogenous factors, such as the production of renewable en- ergy or the activated volume on the balancing market. The model parameters are estimated by a maximum like- lihood approach that explicitly accounts for such factor processes. By comparing the proposed model to several nested models, we investigate whether adding the exogenous factors significantly increases the accuracy of the model fit. We find that intensity processes that only take into account exogenous factors are improved if we add a self-exciting term. On the other hand, to capture the market dynamics correctly, pure self-exciting models need to be extended such that they additionally account for exogenous impacts.
We use point processes to analyze market order arrivals on the intraday market for hourly electricity deliveries in Germany in the second quarter of 2015. As we distinguish between buys and sells, we work in a multivariate setting. We model the arrivals with a Hawkes process whose baseline intensity comprises either only an exponentially increasing component or a constant in addition to the exponentially increasing component, and whose excitation decays exponentially. Our goodness-of-fit tests indicate that the models where the intensity of each market order type is excited at least by events of the same type are the most promising ones. Based on the Akaike information criterion, the model without a constant in the baseline intensity and only self-excitation is selected in almost 50% of the cases on both market sides. The typical jump size of intensities in case of the arrival of a market order of the same type is quite large, yet rather short lived. Diurnal patterns in the parameters of the baseline intensity and the branching ratio of self-excitation are observable. Contemporaneous relationships between different parameters such as the jump size and decay rate of self and cross-excitation are found.
Existing research indicates that on the intraday market for power deliveries in Germany market orders tend to arrive in clusters. To capture such clustering, point processes with an intensity depending on past events, so-called Hawkes processes, appear to be promising. We consider the question whether there is a temporal structure prevalent in the parameters of Hawkes processes estimated for adjacent delivery hours. First we model a diurnal seasonality pattern found in the data and provide an economic intepretation for it. For the remaining decomposed series, we then propose simple (vector) autoregressive models to describe the serial structure. To evaluate our model we conduct a forecasting study. Testing against a benchmark model and a model without any serial structure, we find evidence for our proposed model. Our study reveals that capturing the serial structure in the parameters proves to be useful in understanding the underlying market microstructure.
Paper available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2114177
Paper available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2114196
Working Paper available at:
Lehrveranstaltungen im WS
Carbon risk exposure gains in importance for long-term investors. Due to climate change or climate policies stranded assets might diminish the return of portfolios. Therefore, hedging possibilities need to be assessed.
See Andersson, M., Bolton, P., & Samama, F. (2016). Hedging climate risk. Financial Analysts Journal, 72(3), 13-32.
Diskussion der Anwendbarkeit der Modellierungsansätze auf Commodity-Märkten.
Literatur:
- Balancing energy strategies in electricity portfolio management. Möller Christoph; Rachev Svetlozar T.; Fabozzi, Frank J.. Energy Economics 33 (2011). S. 2–11.
- Buy Low Sell High: a High Frequency Trading Perspective. Cartea, Alvaro; Jaimungal, Sebastian; Ricci, Jason. Mai, 2012.
Abrufbar unter: Social Science Research Network
Diskussion liquiditätsadjustierter Risikomaße.
Literatur:
- Liquidity-adjusted Market Risk Measures with Stochastic Holding Period. Brigo, Damiano and Nordio, Claudio. October, 2010.
Abrufbar unter: Cornell University
Give an overview and compare different models for estimation of hourly price forward curves. Price electricity Derivates based on those HPFCs.
Literatur:
- Pricing Electricity Derivatives on an Hourly Basis. Branger, Nicole, Reichmann, Oleg and Wobben, Magnus. 2009.
- Electric Load Forecasting - USING KERNEL-BASED MODELING FOR NONLINEAR SYSTEM IDENTIFICATION. ESPINOZA, MARCELO; SUYKENS, JOHAN A.K.; BELMANS, RONNIE and DE MOOR, BART. 10.1109/MCS.2007.904656. IEEE CONTROL SYSTEMS MAGAZINE 2007. S. 43-57
- Constructing forward price curves in electricity markets. Fletena, Stein-Erik and Lemming, Jacob. Energy Economics 25 (2003). S. 409–424
<span style="color: rgb(25, 25, 25); font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19.5px; text-align: justify; ">Diskussion von Modellen zur Ermittlung von Risikoprämien in Commodity Märken, insbesondere Elektrizitätsmärkten.</span>
Literatur:
- Variance risk premia in energy commodities. Trolle, Anders B. and Schwartz, Eduardo S.. 2009.
- Modelling the structure of long-term electricity forward prices at Nord Pool. Povh, Martin; Golob, Robert and Fleten, Stein-Erik. 2009.
- Time-varying risk aversion: An application to energy hedging. Cotter, John and Hanly, Jim. Energy Economics 32 (2010). S. 432–441.
- Computing the market price of volatility risk in the energy commodity markets. Doran, James and Ronn, Ehud I.. Journal of Banking & Finance 32 (2008). S. 2541–2552.
- Strategic Forward Contracting in the Wholesale Electricity Market. Holmberg, Pär. The Energy Journal, Vol. 32, No. 1. 2009. S. 169-202.
Literaturübersicht hinsichtlich verschiedener Modelle.
Masterarbeit im Bereich "Finanzmathematik".
Zur Sicherstellung der Frequenz im Stromsystem wird von den Stromnetzbetreibern sogenannte Sekundärregelleistung vermarktet In Forschungsarbeiten der Abteilung wurde ein finanzmathematisches Modell für diesen Markt entwickelt.
Im Rahmen der Masterarbeit soll darauf aufbauend eine Methodik entwickelt werden, die die Gebotsabgabe für eine Teilnahme am Sekundärregelleistungsmarkt optimiert. Dabei sind verschiedene Zielfunktionen und ggf. deren Interaktionen zu untersuchen. Die Arbeit baut auf das o. g. stochastisches Modell zur Generierung von Preisszenarien auf. Das Optimierungsmodell soll anhand einer Überprüfung von Optimalitätskriterien validiert und ausführlich beschrieben werden. Flankiert wird der Kern der Arbeit von einer Beschreibung der wesentlichen Aspekte der Sekundärregelleistung und einer Darstellung des deutschen und österreichischen Regelleistungsmarktes. Alle Modelle und Methoden sind in Python oder R zu implementieren. Die Ergebnisse der Arbeit sollen für die Publikation in einer deutsch- oder englischsprachigen Fachzeitschrift geeignet aufbereitet werden.
Spezifisches Profil der Abteilung
Die Abteilung Finanzmathematik am Fraunhofer ITWM beschäftigt sich unter anderem mit der Modellierung und Simulation von Finanzmärkten und der Bewertung von Derivaten. Im Rahmen des Schwerpunktes „Finanzmathematik für die Energiewirtschaft“ werden aktuelle und zukunftsweisende finanzmathematische Themen mit Bezug zur Energiewirtschaft adressiert.
Kontakt
Dr. Andreas Wagner
Abteilungsleiter Finanzmathematik/Fraunhofer ITWM
Telefon: 0631 31600 4571
E-Mail: andreas.wagner@itwm.fraunhofer.de
Am Lehrstuhl sind zwei vergleichbare Datensätze mit Auftragsbuchdaten für den gleichen Zeitraum verfügbar. Zunächst sollen die Datensätze miteinander verglichen werden. Im Anschluss können z.B. Auswirkungen der Unterschiede auf eine Handelsstrategie untersucht werden.
Masterarbeit im Bereich "Finanzmathematik".
Im Rahmen der Masterarbeit soll eine Methodik entwickelt werden, die die
Bewertung der Location Spreads an der Strombörse EEX ermöglicht. Hierfür ist
ein Modell des europäischen Strommarktes aufzustellen, welches sowohl die
Eigenschaften der einzelnen Länder, als auch deren Korrelation ausreichend
berücksichtigt. Prinzipiell geeignet sind hierfür Fundamentalmodelle oder
Faktormodelle. In beiden Fällen ist eine Analyse der zu modellierenden Märkte
erforderlich, entweder mit dem Fokus auf die physischen Marktstruktur oder
mit Hilfe statistischer Methoden wie der Hauptkomponentenanalyse. In einem
nächsten Schritt muss das Modell an Marktdaten kalibriert werden um die
Stabilität der Parameterschätzung zu beurteilen. In dem kalibrierten Modell
erfolgt die Bewertung der Spread-Optionen mit Monte Carlo Methoden oder
einer zuvor aus dem Modell abgeleiteten geschlossenen Formel sowie der
Vergleich mit dem Standard-Ansatz von Margrabe.
Flankiert wird der Kern der Arbeit von einer Beschreibung des europäischen
Strommarktgefüges, einer statistischen Auswertung der relevanten Märkte
sowie der Implementierung der entwickelten Modelle und Methoden in Matlab
oder R. Die Ergebnisse der Arbeit sollen für die Publikation in einer
Fachzeitschrift geeignet aufbereitet werden.
Spezifisches Profil der Abteilung
Die Abteilung Finanzmathematik am Fraunhofer ITWM beschäftigt sich unter
anderem mit der Modellierung und Simulation von Finanzmärkten und der
Bewertung von Derivaten. Im Rahmen des Schwerpunktes „Finanzmathematik
für die Energiewirtschaft“ werden aktuelle und zukunftsweisende
finanzmathematische Themen mit Bezug zur Energiewirtschaft adressiert.
Kontakt
Dr. Andreas Wagner
Abteilungsleiter Finanzmathematik/Fraunhofer ITWM
Telefon: 0631 31600 4571
E-Mail: andreas.wagner (at) itwm.fraunhofer.de
Die Frage nach dem Marktdesign für den Intraday Strommarkt wird schon länger diskutiert, siehe z.B. https://www.diw.de/documents/publikationen/73/diw_01.c.525734.de/dp1544.pdf
Ende 2018 hat die Deutsche Börse eine kontinuierliche Auktion vorgeschlagen, siehe https://www.deutsche-boerse.com/resource/blob/1458710/717470c265afd9428f43a60cd5e27791/data/7markets-m7-proposal-power-market-model_de.pdf
Das Konzept soll mit dem des kontinuierlichen Handels verglichen werden. Im Anschluss soll versucht werden, mit vorliegenden Auftragsbuchdaten für den Intraday Strommarkt eine kontinuierliche Auktion zu simulieren. Nach Möglichkeit sollen die Marktergebnisse miteinander verglichen werden.