

Optimization model for simultaneous controlled charging of electric vehicles in distribution grids in rural, suburban and urban areas Arnd Hofmann*, Marco Sebastian Breder, Florian Boehnke, Christoph Weber 8th E-Mobility Power System Integration Symposium, Helsinki October 7th, 2024 Gefördert durch:

DLR Projektträger Funding code: 01MV21UN03

Offen im Denken

aufgrund eines Beschlusses des Deutschen Bundestages

Overview

8th E-Mobility Power System Integration Symposium, Helsinki

- Motivation
- Low voltage distribution grids as predictors for future EV demand
- Parameterisation
- Clustering
- Results
- Summary and conclusion

- Households and other small customers are connected to the LV electricity grid Total: more than 1.2 Mio km line length, more than 500.000 mostly radial branches
- Differences related to the settlement type (degree of urbanization):
 E.g., dense urban grids vs. sparse distribution of customers in rural areas;
- Heterogeneous topological layout of grids in a similar area:
 - E.g., number of branches per transformer, line lengths, number and types of customers renewable infeed and configuration of branches
- No public database available

Reasons: more than 800 grid operators, critical infrastructure and data privacy concerns...

ΕV

- size of the transformer,
- other electrical loads in branches, PV infeed ...

*)Destatis: Table 12421-0100. Vorausberechnete Privathaushalte. https://www-genesis.destatis.de/genesis/ online, checked on 08/16/2024. 2024/10/07

Approximation of other distribution grid characteristics: Triangular probability density function

Parameterisation

- Number of house connections to the grid,
- residences per house connection,
- LV transformer power per house connection,
- installed PV power per house connection,
- (Effective) length of the distribution network branch,
- Number of branches.

Simulation approach

Low voltage distribution grids as predictors for future EV demand

Clustering of LV distribution grids

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Clustering

Cluster	Degree of Urbanisation		
Scattered settlement mixed-use area	▲ 100 %		
Low-density residential area A	▲ 100 %		
Low-density residential area B	▲ 100 %		
Low-density mixed-use area	50 %		
Medium-density residential area A	▲ 100 %		
Medium-density residential area B	▲ 100 %		
Medium-density mixed-use area	50 %		
High-density residential area	50 %		
High-density mixed-use area	🙀 50 % <mark>🙆 50 %</mark>		
Low-density multifamily residential area	50 %		
Medium-density multifamily residential area A	🔁 50 % 🚺 50 %		
Medium-density multifamily residential area B	🙀 50 % 🚺 50 %	Cl	
High-density multifamily residential area	<u>444</u> 100 %	M	
Urban multifamily residential residential area	100 %		
High rise area	100 %		

Municipality areas:

Cluster and DoU categorisation defined in: Springmann, E.; Weiß, A.; Hecker, M. (2023): Meta-Cluster. Niederspannungsnetze. FfE. München. https://www.ffe.de/wpcontent/uploads/ 2023/07/Steckbriefe-Meta-Cluster.pdf. checked on 12/16/2023.

Clustering

Application of official statistics:

- Categorization of 10,990 German municipalities into settlement types (DoU),
- Clustering of communities into data matrix in dependence of size classes and DoU,
- Number of households for all communities' size classes in dependence on the number of persons per household (1–5+ persons).

DoU:	rural	sub-urban	urban
Inhabitants GER*)	19.01	34.86	30.50
% of population	22.53%	41.32%	36.15%
Persons per household	2.16	2.12	1.88
Total household*)	8.81	16.48	16.20
% of total households	21.23%	39.72%	39.05%

> Bundesinstitut für Bau-, Stadt- und Raumforschung: Raumgliederungen Referenztabellen Deutschland. Gebietsstand 31.12.2022. https://www.bbsr.bund.de/BBSR/ DE/forschung/raumbeobachtung/downloads/downloadreferenzen, checked on 03/07/2024.
> Destatis: Table 12211-9023. Privathaushalte: Deutschland, Jahre (bis 2019), Haushaltsgröße, Gemeindegrößenklassen. https://wwwgenesis.destatis.de/genesis/online, checked on 03/07/2024.

UNIVERSITÄT

D U I S B U R G E S S E N

Offen im Denken

*) in millions

Exemplary LV grid parameter set for 10³ runs

Offen im Denken

UNIVERSITÄT DUISBURG ESSEN

9

Cumulated charging power for 10 EV

Exemplary results

D U I S B U R G E S S E N

Offen im Denken

UNIVERSITÄT

8th E-Mobility Power System Integration Symposium, Helsinki

- Model Setup: Flexible approach for analysing German low voltage grids using Monte Carlo simulations
- Grid Branches: Modelled through 15 distinct clusters, each with specific parameter values
- Randomisation: Selects clusters/parameters from predefined ranges for adaptability
- Efficiency: simulation of 10³ branches (hourly resolution, 1 year) in under 45 minutes
- Value: Suitable for large-scale analysis and assessing EV charging flexibility

8th E-Mobility Power System Integration Symposium, Helsinki

Thank you very much for your attention!

2024/10/07