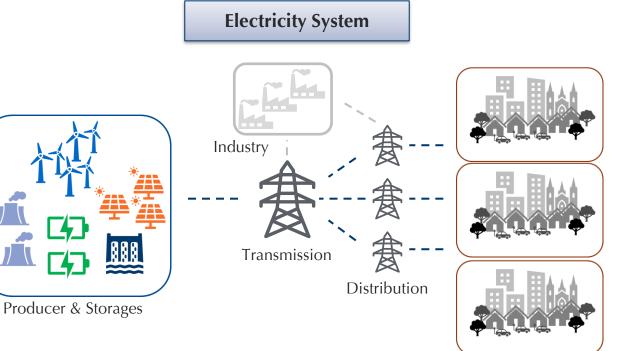


Distortions in energy related decision-making at households – An MCP approach incorporating system perspective

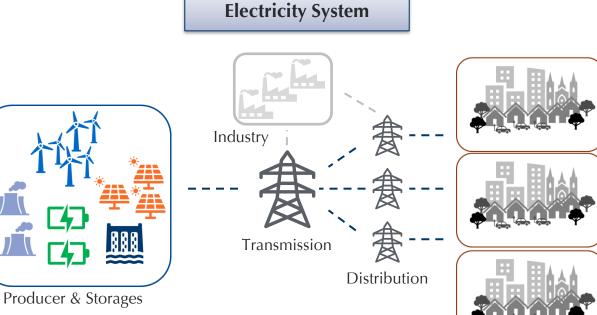
Marco Sebastian Breder EURO 2024, Technical University of Denmark (DTU), Copenhagen, Denmark 01.07.2024

Offen im Denken


Ag	enc	la

Motivation	1
Literature Review	2
Method & Data	3
Preliminary Results	4
Outlook	5

Demand response by residential consumers is of pivotal relevance to meet transformation challenges


- Challenges from overall energy system perspective:
 - Integration of renewables
 - Decarbonization (cross-sectoral)
 - Grid / system resilience
 - (price-driven) **Demand response**

Residential Consumers

Demand response by residential consumers is of pivotal relevance to meet transformation challenges

- Challenges from overall energy system perspective:
 - Integration of renewables
 - Decarbonization (cross-sectoral)
 - Grid / system resilience
 - (price-driven) **Demand response**

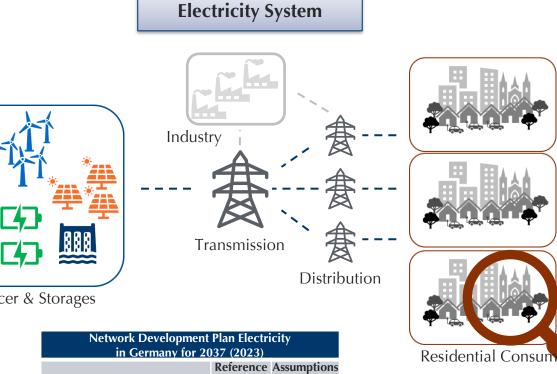
- Small-scale flexibilities are cruci

Market-oriented

Grid-oriented

Renewables integration Balancing energy costs of Balance Groups Peak-demand reduction Grid stability Avoidance of congestion

Network Development Plan Electricity
in Germany for 2037 (2023)Reference
2020/2021Assumptions
2037Heat Pumps (HPs) in million1.214.7Electric Vehicles (EVs) in million1.225.2-31.7Photovoltaic (PV) & Battery
Storage Systems (BSS) in GW1.367.4


House of Energy Markets

& Finance

Residential Consumers

Demand response by residential consumers is of pivotal relevance to meet transformation challenges

- Challenges from overall energy system perspective:
 - Integration of renewables —
 - Decarbonization (cross-sectoral)
 - Grid / system resilience
 - (price-driven) **Demand response** —

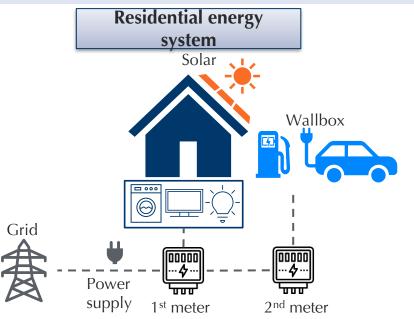
_	Small-sca	ale flexi	bilities	are	crucial	
						-

Market-oriented

Grid-oriented

Renewables integration Balancing energy costs of **Balance Groups Peak-demand reduction**

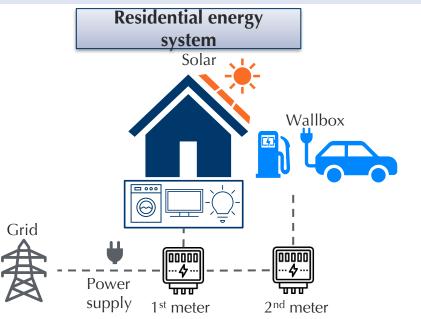
Grid stability Avoidance of congestion


> Normative View: The efficient implementation relies on efficient configuration of meters and tariffs

Producer & Storages

Network Development Plan Electricity											
in Germany for 20	37 (2023)										
	Reference	Assumption									
	2020/2021	2037									
Heat Pumps (HPs) in million	1.2	14.7									
Electric Vehicles (EVs) in million	1.2	25.2-31.7									
Photovoltaic (PV) & Battery Storage Systems (BSS) in GW	1.3	67.4									

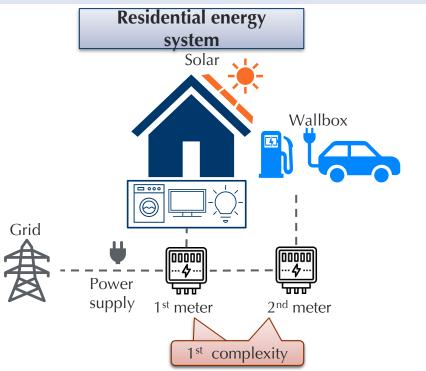
Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs



 Disentangling the influence of electricity meter and tariff configurations on the operational and investment decisions of residential consumers

Electricity Tariff = *Basic Charge* + *Energy charge* + *Grid charge* + *other components*

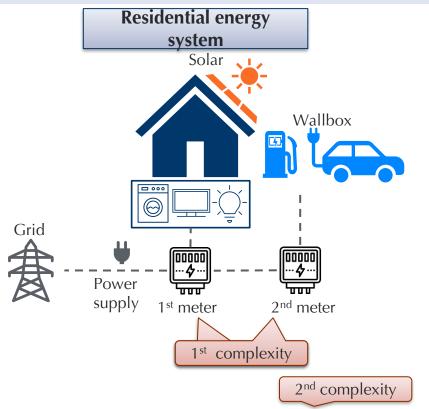
Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs


- Disentangling the influence of electricity meter and tariff configurations on the operational and investment decisions of residential consumers
- The focus is on three complexities:

Electricity Tariff = *Basic Charge* + *Energy charge* + *Grid charge* + *other components*

UNIVERSITÄT D_U_I_S_B_U_R_G E_S_S_E_N Offen im Denken

Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs


- Disentangling the influence of electricity meter and tariff configurations on the operational and investment decisions of residential consumers
- The focus is on three complexities:
 - 1. Number of meters (1 meter = 1 tariff)

Electricity Tariff = *Basic Charge* + *Energy charge* + *Grid charge* + *other components*

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

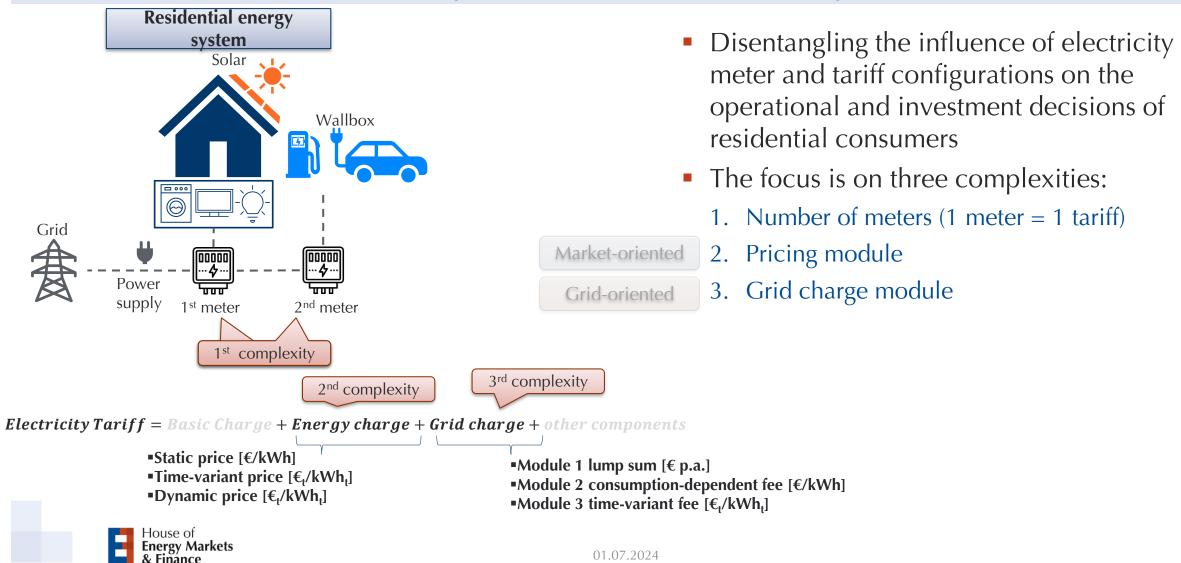
Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs

 Disentangling the influence of electricity meter and tariff configurations on the operational and investment decisions of residential consumers

• The focus is on three complexities:

1. Number of meters (1 meter = 1 tariff)

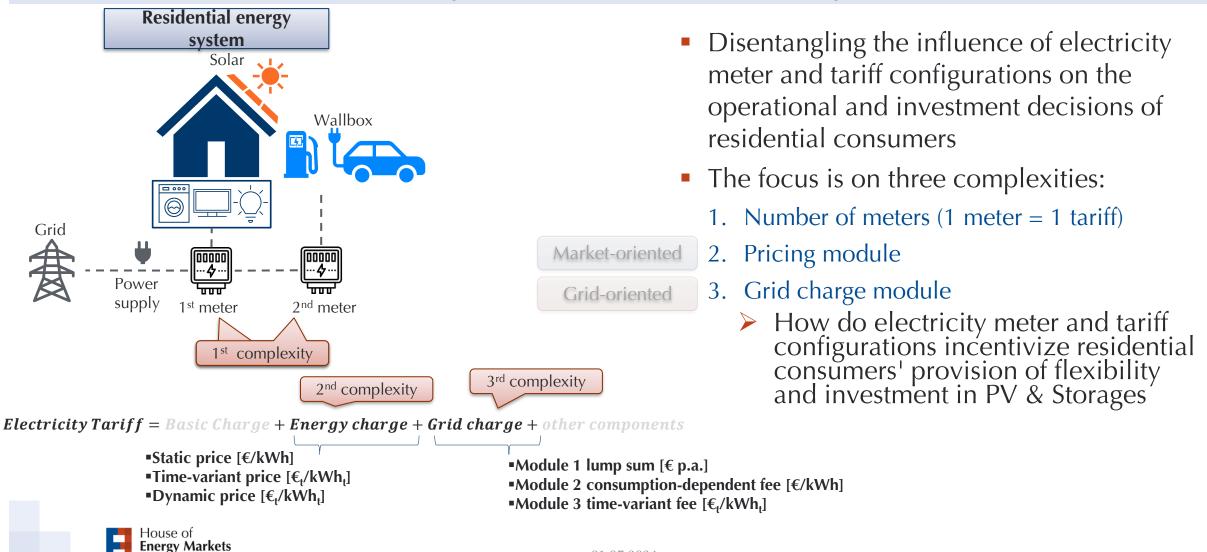
Market-oriented


2. Pricing module

Electricity Tariff = *Basic Charge* + *Energy charge* + *Grid charge* + *other components*

Static price [€/kWh]
 Time-variant price [€t/kWht]
 Dynamic price [€t/kWht]

UNIVERSITÄT DULSBURG ESSEN Offen im Denken


Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs

& Finance

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs

01.07.2024

Literature review reveals a gap on wholesale market interaction, consideration of uncertainty and future technological options (meter)

	Objective	Scope			
Stute & Klobasa (2024)	Interplay between dynamic tariffs and different grid charge designs	Households & Grid			
Spiller et al. (2023)	Effect of tariffs on household adoption of small-scale flexibilities	Households			
Vom Scheidt et al. (2019)	Potential individual economic consequences of tariff selection	Households			
Andruszkiewi cz et al. (2021)	Effectiveness of ToU tariffs, used as price-based demand response programs	Households			
Pallonetto et al. (2016)	Effectiveness of demand response (All-electric) strategies using ToU tariffs	Household & Utility perspective			
Schreck et al. (2022)	Effect of grid tariff design on demand and feed-in peaks and the resulting financial effects	Households vs. Local Energy Markets			
Pinel et al. (2019)	Relationship between grid tariffs and investment	Neighborho ods & Grids			

- Relevant literature <u>analyzes</u>
 - Interplay of tariff components
 - Incentives for investments
 - Financial consequences
 - Interaction with distribution system operators
- But lacks interactions with markets

Literature review reveals a gap on wholesale market interaction, consideration of uncertainty and future technological options (meter)

	Objective	Scope			
Stute & Klobasa (2024)	Interplay between dynamic tariffs and different grid charge designs	Households & Grid			
Spiller et al. (2023)	Effect of tariffs on household adoption of small-scale flexibilities	Households			
Vom Scheidt et al. (2019)	Potential individual economic consequences of tariff selection	Households			
Andruszkiewi cz et al. (2021)	Effectiveness of ToU tariffs, used as price-based demand response programs	Households			
Pallonetto et al. (2016)	Effectiveness of demand response (All-electric) strategies using ToU tariffs	Household & Utility perspective			
Schreck et al. (2022)	Effect of grid tariff design on demand and feed-in peaks and the resulting financial effects	Households vs. Local Energy Markets			
Pinel et al. (2019)	Relationship between grid tariffs and investment	Neighborho ods & Grids			

- Relevant literature <u>analyzes</u>
 - Interplay of tariff components
 - Incentives for investments
 - Financial consequences —
 - Interaction with distribution system operators

- Relevant literature <u>considers</u>
 - Various combinations of tariff components
 - Different levels of electrification of residential consumers

- markets
- But lacks interactions with > But predominantly relies on static data inputs

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

Literature review reveals a gap on wholesale market interaction, consideration of uncertainty and future technological options (meter)

	Objective	Scope			
Stute & Klobasa (2024)	Interplay between dynamic tariffs and different grid charge designs	Households & Grid			
Spiller et al. (2023)	Effect of tariffs on household adoption of small-scale flexibilities	Households			
Vom Scheidt et al. (2019)	Potential individual economic consequences of tariff selection	Households			
Andruszkiewi cz et al. (2021)	Effectiveness of ToU tariffs, used as price-based demand response programs	Households			
Pallonetto et al. (2016)	Effectiveness of demand response (All-electric) strategies using ToU tariffs	Household & Utility perspective			
Schreck et al. (2022)	Effect of grid tariff design on demand and feed-in peaks and the resulting financial effects	Households vs. Local Energy Markets			
Pinel et al. (2019)	Relationship between grid tariffs and investment	Neighborho ods & Grids			

- Relevant literature <u>analyzes</u>
 - Interplay of tariff components
 - Incentives for investments
 - Financial consequences
 - Interaction with distribution system operators

- Relevant literature <u>considers</u>
 - Various combinations of tariff components
 - Different levels of electrification of residential consumers

- Relevant literature does not consider
 - differentiation of small-scale flexibilities in the tariff selection decision

- But lacks interactions with markets
- But predominantly relies
 on static data inputs
 - Individual tariff heterogeneity

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Literature review reveals a gap on wholesale market interaction, consideration of uncertainty and future technological options (meter)

					×	×	3C						
						×	×	×					
							x	x					
Pinel et al. (2019)							×	×					

*energy-based grid charge is defined as static, time-variant or dynamic price.

- Derived objectives:
 - Economic effects on residential consumers when faced with individual tariff heterogeneity
 - operational decisions and investments in PV-BSS under uncertainty
 - Implications for the energy system, particularly regarding the aforementioned challenges

Method & Data

- Solving of multiple individual (different agents) optimization problems
 simultaneously and in equilibrium*
 - by combining the Karush-Khun-Tucker** (KKT) conditions for optimality of each of the agents and connecting them via market clearing conditions
 - primal variables (eg., power generation) and dual variables (eg., prices) can be constrained together
 - Possibility to reflect market power

- Solve the problem represented by the function $F: \mathbb{R}^n \to \mathbb{R}^n$
 - find vectors $x \in \mathbb{R}^{n^2}$, $y \in \mathbb{R}^{n^2}$ such that for all i:
 - 1. $F_i(x, y) \ge 0, x_i \ge 0, x_i * F_i(x, y) = 0$ for i=1, ..., n_1

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

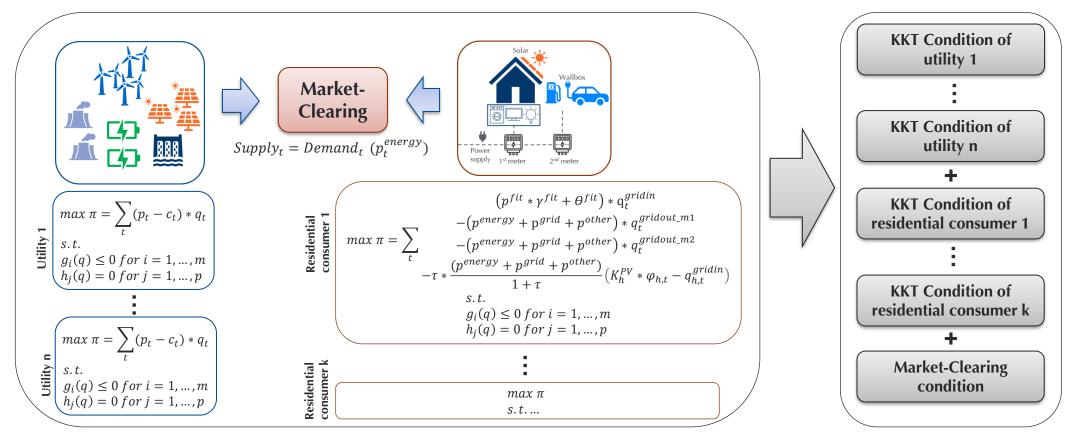
2. $F_{j+n_1}(x, y) = 0, y_i free$, for j=1, ..., n_2

The first condition is often written more compactly

 $0 \le F_i(x) \perp x \ge 0,$

with the "perp" operator \perp denoting the inner product of two vectors equal to zero

**KKT conditions are first-order conditions, i.e., conditions that are formulated using first derivative vectors and matrices (gradients and Jacobians). To formulate the KKT conditions it is convenient to define the Lagrangian function.



^{*} A state of the modeled system where there is no incentive for it to change.

Method & Data

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

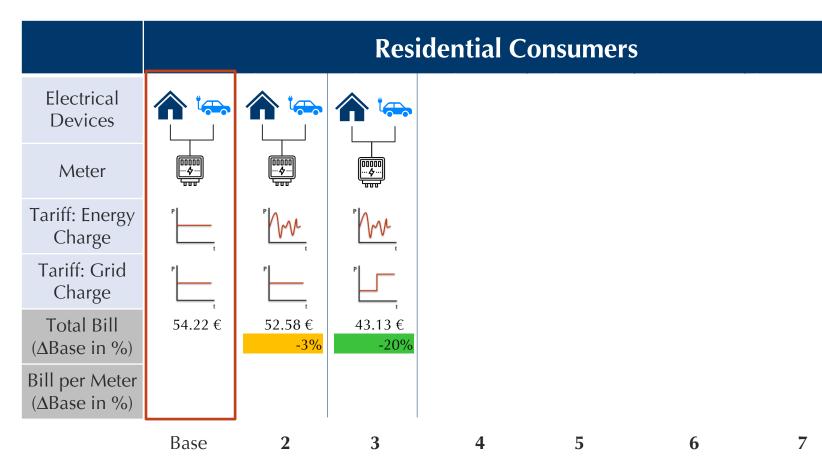
Interrelated optimization problems and equilibrium problem (KKT)

Data for preliminary results based on SLP, MID 2017 Driving Profiles, Smard (BNetzA).

* Agents are Conventional, Renewables & Storages, each with specific constraints tailored to their operational characteristics and market roles.

** Constraints consider PV BSS limits, Wallbox-EV limits, internal clearing condition; Dumb or smart charging possible.

Stylized setting with focus on residential consumer



UNIVERSITÄT

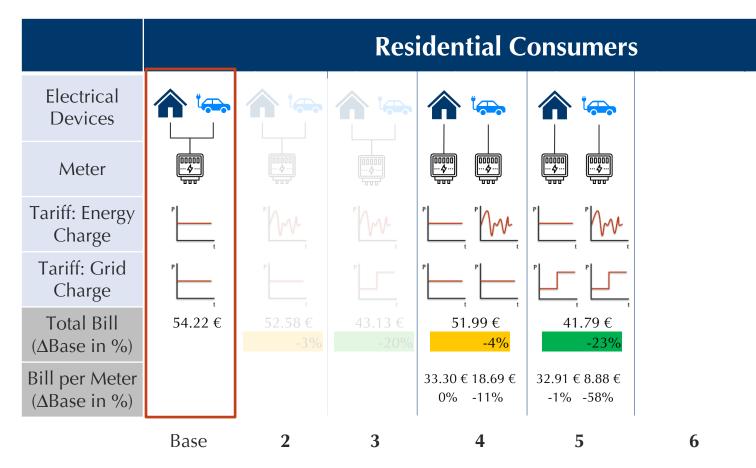
DUISBURG ESSEN

Offen im Denken

Stylized setting with focus on residential consumer

7 configurations

UNIVERSITÄT


D U I S B U R G E S S E N

Offen im Denken

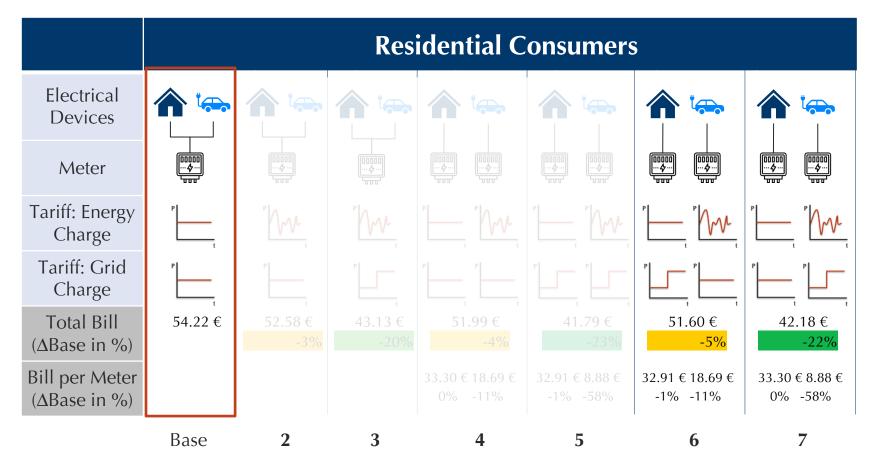
- Residential consumer w/o PV & BSS, w EV-Wallbox 22 kW
- Demand
 3700 kWh + 2600 kWh
- Preliminary results based on 4 weeks (one week per quarter)
- Dynamic energy price and time-variant grid fee most preferable

Stylized setting with focus on residential consumer

7 configurations

UNIVERSITÄT

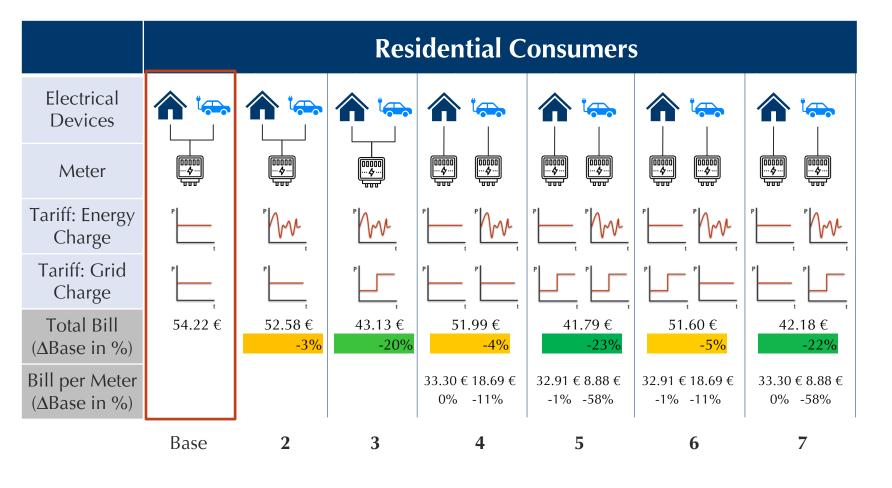
DUISBURG ESSEN


Offen im Denken

- Residential consumer w/o PV & BSS, w EV-Wallbox 22 kW
- Demand
 3700 kWh + 2600 kWh
- Preliminary results based on 4 weeks (one week per quarter)
- Distinguishing applications leads to further reductions

7

universität D_U I_S_B_U_R_G E_S_S_E_N Offen im Denken


Stylized setting with focus on residential consumer

- 7 configurations
 - Residential consumer w/o PV & BSS, w EV-Wallbox 22 kW
 - Demand
 3700 kWh + 2600 kWh
- Preliminary results based on 4 weeks (one week per quarter)
- The level of reduction depends on tariff configuration

Stylized setting with focus on residential consumer

7 configurations

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

- Residential consumer w/o PV & BSS, w EV-Wallbox 22 kW
- Demand 3700 kWh + 2600 kWh
- Preliminary results based on 4 weeks (one week per quarter)
- Assuming applicationdependent cost reflection, the meter-tariff configuration influence individual electricity bills - non-robust first estimate

Outlook

- Model extension (tbd):
 - Detailed presentation of agents
 - New Agent DSO
 - Bidirectional charging
 - V2H, V2G
 - Scenario setting and data
 - E.g. driving/charging profiles
- Reduction in computational complexity
 - temporal aggregation into representative segments

- Reflection of uncertainty:
 - Uncertainty regarding weather & driving profiles
 - Impact on residential PV & BSS, HP, Air Conditioner, EV charging, Renewables (Wind & Solar at Wholesale market)
 - From deterministic to stochastic
 - Approach to energy markets given in:
 - Chanpiwat & Gabriel (2024)
 - Egging (2013, 2010)
 - Devine & Bertsch (2018)

Thank you for your attention!

Marco Sebastian Breder, M.Sc. Team "Energy Markets and Policy" House of Energy Markets and Finance University of Duisburg-Essen R11 T07 C02 | Universitätsstraße 12 | 45141 Essen | Germany Tel. +49 201/18-36459 | Fax +49 201/18-32703 Email: Marco.Breder@uni-due.de www.ewl.wiwi.uni-due.de

01.07.2024