

Estimating the Value of Distributed Demand Side Management Technologies in Central Western Europe - Assessing Regional Differences in View of Locational Pricing Mechanisms

Florian Boehnke, Hendrik Kramer, Christoph Weber Vlore, Mai 23rd 2022

Offen im Denken

Electricity market design in Europe is challenged

- Zonal pricing is the prevalent market design among member states
 - Theory: internal congestion free zones (efficiency criteria)
 - Reality: ~1.2 bn € for redispatch measures since 2017 in Germany [1]
- Efficiency of current market design is challenged by intra-zonal congestions
 - Increasing renewable energy sources in "sweet spots"
 - Delayed power grid expansion
- Modifications of the market design to overcome inefficiencies
 - Market zone reconfiguration
 - Extremely small zones: Nodal Pricing

[1] Federal Network Agency Germany, Report "Quarterly Report Network and System Security - Full year 2020"

Research Focus

- Nodal Market Design
 - Each HV node reflects a market zone
 - Scarcity of the grid is part of nodal electricity price \rightarrow One step clearing mechanism
 - Theory:
 - Efficient market design
 - Nodal price signal as regional investment incentive
 - Nodal market design is already implemented (e.g. US ISOS)

- Research Question
 - To what extent would nodal prices vary in 2030 in CWE?
 - What is the local value of flexibility under nodal market design for different flexibility options?

Results - Joint Market Model

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Price Patterns for CWE

Average Day Ahead Price [€/MWh]

Results – Arbitrage Model

Boxplots of Flexibility Options

23.05.2022

- Nodal prices in 2030 reflect today's market zones
 - Main driver: scarcity of international transmission capacities
 - Zones differ in internal level of congestion
- Regional differences in the value of flexibility are observable: (1) between and (2) within countries
 - The use of flexibilities should be particularly encouraged in regions with high flexibility values
- Technical characteristics reward flexibility options differently in the regions of scope
 - Specific incentives for the locational choice of flexibility investment are advisable

Thank you for your attention!

Florian Boehnke (florian.boehnke@uni-due.de)

25.06.2024

Methodology

Nodalizing National Input Timeseries

- RES infeed on NUTS3-level
 - Comparison of existing RES capacities and target level on national level
 - Open space analysis
 - Discrete choice model to build up missing capacities
 - Applying a weather year (MW \rightarrow MWh)
- Voronoi regions around HV nodes
 - Covered area assigned towards the respective center node
 - Proportional distribution of split NUTS regions

Methodology

Nodal RES Infeed and Demand

Nodal Distribution of RES

Nodal Distribution of Electricity Demand

23.05.2022

Electric Vehicle Comparison

Price Effect

- Relative value in FR is low \rightarrow low prices
- Relative value in AT is lower compared to DE,NL \rightarrow similar prices with lower volatility

 \rightarrow Reference price niveau has to be considered \rightarrow High volatility makes exploitation more valuable

Regional Storage Arbitrage Mode	el	UNIVERSITÄT D_U I S_B U R G E S S E N Offen im Denken
		Introduction – Market Designs – Modeling – Results
maximize $\sum_{t \in \mathcal{T}} \pi_t \cdot (P_t^{OUT} - P_t^{IN})$		Maximize Margin through Interaction
Subject to		
$E_{t+1}^{SOC} = E_t^{SOC} + \tau \cdot (\eta^{IN} P_t^{IN} - 1/\eta^{OUT} \cdot P_t^{OUT} - P_t^{DR})$	$\forall t \in \mathcal{T} \setminus \{t_{end}\}$	Intertemporal Filling Level Update
$0 \le E_t^{SOC} \le \overline{E^{SOC}}$	$\forall \ t \in \mathcal{T}$	Upper and lower Storage bound
$E_1^{SOC} = E_{8760}^{SOC}$		Initial Charging State = End Charging State
$BIN_t^{IN} + BIN_t^{OUT} \le 1$	$\forall \ t \in \mathcal{T}$	Only Charge or Discharge
$0 \le P_t^{IN} \le BIN_t^{IN} \cdot \overline{P^{IN}}$	$\forall \ t \in \mathcal{T}$	Maximum Charging Rate
$0 \le P_t^{OUT} \le BIN_t^{OUT} \cdot \overline{P^{OUT}}$	$\forall \ t \in \mathcal{T}$	Maximun Discharging Rate
Variables used:	Parameters used:	Sets used:
E_t^{SOC} Storage state of charge filling level	η^{IN} Charging ef	ficiency $t \in \mathcal{T}$ time step in

Discharging efficiency

Max. charge power

Max. discharge power

Time step size

timestep horizon

 η^{OUT} ...

τ...

 $\overline{P^{IN}}$...

 $\overline{P^{OUT}}$...

 E_t^{SOC} Storage state of charge filling level P_t^{IN} Storage charging power P_t^{OUT} Storage discharging power BIN_t^{IN} Binary state: Charging BIN_t^{OUT} Binary state: Discharging