

Heterogenous investors in energy system models

Christoph Weber EURO Copenhagen July 2, 2024

UNIVERSITÄT DUISBURG ESSEN

Solar energy in Germany – the physical facts and the political questions

Motivation

- Where should investment in PV be made?
- Where are investments actually made?
- Who decides about investments?

Motivation & objective

Motivation

- Increasing shares of renewables
 - > Higher variations of net load within days (and between days)

> More distributed generation

- > at least for rooftop PV and in countries like Germany
- Also distributed flexibilities

➢Notably electric vehicles

Heterogenous investments and investors

- Partly heterogeneity of technology potentials and preferences
- Partly limited knowledge of planners/modellers
- Standard energy system models do not cope with these investors
 - Linear programs subject to penny switching
 - Differentiation by investment opportunities (sites and technology types) possible,
 - > yet leads to large models and still unsatisfactory representation of individual decision making
 - Objective: develop an alternative approach to cope with heterogenous investments

UNIVERSITÄT

D_U_I_S_B_U_R_G

Motivation	1
State of the art	2
Mathematical problem formulation	3
Solution approach	4
Application	5
Final remarks	6

Status quo: Energy system models

State of the Art

- Large-scale optimization models to model electricity and other energy systems
 - Mostly formulated as linear programs or mixed integer linear programs
- Focus on generation expansion and operations,
 - Generally limited detail regarding grid modelling
- Examples of long-standing energy system models:
 - MARKAL (Fishbone and Abilock, 1981), TIMES (Loulou, 2008; Loulou and Labriet, 2008)
 - Traditionally making use of only limited number of time slices (representative hours)
- Other examples
 - E2M2s cf. (Swider and Weber, 2007; Spiecker, Vogel and Weber, 2013)
 - PERSEUS (Rosen, Tietze-Stöckinger and Rentz, 2007)
 - REMIX (Scholz, 2012; Gils et al. 2017)
 - JHSMINE (Munoz et al. 2014, Xu and Hobbs 2021)
 - > Often more detailed temporal resolution, up to hourly resolution
 - > But long computation times and/or limitations regarding computational details

UNIVERSITÄT

D_U_I_S_B_U R G

Extensions to cope with heterogeneity

State of the Art

- Differentiate technologies and/or applications within energy system models, e.g.
 - Solar energy use differentiated by orientation of roofs
 - Heating systems by building types
- Separate detailed modelling of (geographical) distribution of renewables and demand, e.g.

UNIVERSITÄT

DUISBURG

Open-Minded

- Renewable potentials and land use restrictions, e.g. renewable ninja (Pfenninger, Staffel 2016)
- Models for heating systems in buildings, e.g. HeatSim (Bauermann 2016)
- Iterative coupling of energy demand and system models, e.g.
 - Heating systems & electricity markets (Bauermann et al. 2014)
 - Models of demand flexibility & electricity systems (Misconel et al. 2023)

Why not integrate them?

Consumer decisions as optimization models - discrete choice models

UNIVERSITÄT DUISBURG ESSEN Open-Minded

State of the Art

- Category of models popularized by Nobel laureate Daniel McFadden and others
 - Describe optimal choices under stochastic utility
 - Diverse specifications, notably logit and probit models
 - Logit specification presents advantage of analytical formulations
- Standard stochastic utility formulation

 $U_i = V_i + \varepsilon_i$

Energv Markets

- Consumers choose among alternatives *i*
- Optimal individual choice: highest sum of observable and stochastic utility
- Corresponding choice probability or in case of binary choices (adoption yes/no)

$$Prob_{i} = \frac{e^{V_{i}}}{\sum_{j} e^{V_{j}}} \qquad Prob_{i} = \frac{1}{1 + e^{-V_{i}}}$$

Corresponding expected indirect utility function: LogExpSum (cf. Small & Rosen 1981) $E[U_i] = \ln(e^{V_i} + 1)$

Choice-based energy system modelling

- Discrete choice models
- Energy system models

Choice-based energy system modelling

Key advantages:

- More **"realism"** in energy system models
- Align the "central planner paradigm" of energy system models with the distributed decision making of the energy transition

Key challenges:

Non-linear model

Energy Markets

Efficient solution algorithms

Note on terminology:

 Term coined in analogy to "Choice-based facility location planning" (Müller 2023, based on Benati 1999, Benati and Hansen 2002, Haase 2009, Haase and Müller 2014)

UNIVERSITÄT

Open-Minded

> Analogy also in two-level problem structure

Methodological basis: Agent-based welfare maximization

Mathematical problem formulation

Microeconomic background:

- Equivalence of market outcomes under perfect (or working) competition and optimum reached by social planner
- Welfare (in partial equilibrium) corresponds to sum of consumer(s) surplus and producer(s) surplus

UNIVERSITÄT D_U_I_S_B_U R G

Open-Minded

Basic idea:

- 1) Formulation of surpluses (respectively money-metric utility) for all agents
- 2) Summation of surpluses
- 3) Elimination of transfer payments (and the corresponding prices) in the aggregated surplus

First implementation:

Focus on transformation and capacity constraints

General agent in energy system models

UNIVERSITÄT D_U_I_S_B_U_R_G E_S_S_E_N Open-Minded

Mathematical problem formulation

(sub-)system boundary

Source: based on Finke et al. (2024)

Overall objective function and agent surpluses

Mathematical problem formulation

Welfare:

$$\max_{d_t, K_i, y_{i,t}} W$$

$$W = S^C(d_t) + \sum_i S^{CvP}(K_i, y_{i,t}) + \sum_j S^{RE}_j(\pi_j, y_{j,t})$$

Consumer surplus:

$$S^{C}(d_{t}) = \sum_{t} (V - p_{t}) \cdot \Delta t \cdot d_{t}$$

Utility: represented by VOLL Conventional producer surplus: Cost: based on paid price

Cost: including operational and investment cost

$$S_i^{CvP}(K_i, y_{i,t}) = \sum_t (p_t - c_i^{op}) \cdot \Delta t \cdot y_{i,t} - c_i^{inv} \cdot K_i$$

Revenue: based on received price

Renewable producer surplus:

$$S_j^{RE}(\pi_j,\varphi_{j,t})=\cdots$$

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

List of symbols:

- *i* index conventional producers
- *j* index renewable producers
- *t* index time steps
- c_i^{op} operational cost tech *i*
- d_t (realised) demand time t
- K_i capacity tech *i*
- p_t price time t
- S^{xyz} economic surplus group xyz
- *V* value of lost load (VOLL)
- W welfare
- $y_{i,t}$ production tech *i*, time *t*

 Δt time step length

Constraints

Methodology

Agent-specific constraints: Demand:

$$d_t \cdot \Delta \mathbf{t} + s_t \cdot \Delta \mathbf{t} = D_t \cdot \Delta \mathbf{t} \quad \forall t$$

Conventional capacity:

 $y_{i,t} \cdot \Delta t \leq K_i \cdot \Delta t \quad \forall i \; \forall t$

UNIVERSITÄT DUISBURG ESSEN Open-Minded

List of symbols (continued):

 D_t planned demand (load) s_t load shedding

Overarching constraints:

Market clearing:

$$d_t \cdot \Delta t = \sum_i y_{i,t} \cdot \Delta t + \sum_j K_j^{max} \varphi_{j,t} \cdot \pi_j \cdot \Delta t - r_t \cdot \Delta t \quad \forall t$$

 K_j^{max} maximum potential tech j r_t renewable curtailment at time t π_j probability of invest in tech j $\varphi_{j,t}$ generation profile tech j

Objective function – focus on renewable producer surplus

DUISBURG ESSEN

UNIVERSITÄT

Relevant distribution properties

 $\varepsilon \sim LD(\mu, s)$

LD: logistic distribution

 $\mu = 0$: mean

 $s = \frac{1}{\beta}$: scale parameter Cumulative distribution function:

$$F(\varepsilon) = \frac{1}{1 + e^{-\beta\varepsilon}}$$

Probability density function:

$$f(\varepsilon) = \frac{\beta e^{-\beta \varepsilon}}{(1 + e^{-\beta \varepsilon})^2}$$

Note std. deviation:

 $sd = \frac{s\pi}{\sqrt{3}} = \frac{\pi}{\beta\sqrt{3}}$

Key properties of the aggregate optimization problem

Solution approach

Proposition 1:

Aggregation of surpluses of generalised price-taking agents leads to a **non-linear welfare maximization problem** in standard primal variables

• Proposition 2:

This non-linear welfare maximization problem is concave

• Proposition 3:

The non-linear concave optimization problem may be **reformulated** as an **exponential cone problem**

Proposition 4 (tentative):

Higher heterogeneity/entropy (as measured by parameter $\frac{1}{\beta}$) increases c.p. welfare if Prob<0.5 and decreases welfare if Prob>0.5

UNIVERSITÄT

D_U_I_S_B_U_R_G

Proposition 1 – non-linear welfare maximization

UNIVERSITÄT D_U I S_B_U R G E S S E N Open-Minded

Welfare:

$$W = S^{C}(d_{t}) + \sum_{i} S^{conv}(K_{i}, y_{i,t}) + \sum_{j} S^{RE}_{j}(\pi_{j}, y_{j,t})$$

$$= \sum_{t} (V - p_{t}) \cdot \Delta t \cdot d_{t} + \sum_{i} (\sum_{t} (p_{t} - c_{i}^{op}) \cdot \Delta t \cdot y_{i,t} - c_{i}^{inv} \cdot K_{i}) + \sum_{j} \left(\sum_{t} (p_{t} - c_{j}^{op}) \cdot \Delta t \cdot \varphi_{j,t} - c_{j}^{inv} \right) K_{j}^{max} \pi_{j} + \sum_{j} H(\pi_{j}) K_{j}^{max} \frac{1}{\beta}$$
Consumer surplus
Conventional producer surplus
Conventional producer surplus
Conventional producer surplus
$$\sum_{t} \left(p_{t} \cdot \Delta t \cdot \left(-d_{t} + \sum_{i} y_{i,t} + \sum_{j} \varphi_{j,t} K_{j}^{max} \pi_{j} \right) \right) = \sum_{t} p_{t} \cdot \Delta t \cdot r_{t}$$

= 0 under standard market and renewable assumptions

Revised aggregate welfare:

$$W = -\left(\sum_{t} \Delta t \cdot \left(V \cdot s_{t} + \sum_{i} c_{i}^{op} y_{i,t}\right) + \sum_{i} c_{i}^{inv} K_{i} + \sum_{j} c_{j}^{inv} K_{j}^{max} \pi_{j}\right) + \sum_{j} H(\pi_{j}) K_{j}^{max} \frac{1}{\beta}$$

 \triangleright elimination of dual variable p_t , equivalent to cost minimization corrected for heterogeneity term

Proposition 2 – concave problem

UNIVERSITÄT D_U I S_B U R G E S S E N Open-Minded

Objective function:

$$W = -\left(\sum_{t} \Delta t \cdot \left(V \cdot s_{t} + \sum_{i} c_{i}^{op} y_{i,t}\right) + \sum_{i} c_{i}^{inv} K_{i} + \sum_{j} c_{j}^{inv} K_{j}^{max} \pi_{j}\right) + \sum_{j} H(\pi_{j}) K_{j}^{max} \frac{1}{\beta}$$

Constraints:

Demand:

$$d_t \cdot \Delta t + s_t \cdot \Delta t = D_t \cdot \Delta t \quad \forall t$$

Conventional capacity:

$$y_{i,t} \cdot \Delta t \le K_i \cdot \Delta t \quad \forall i \; \forall t$$

Market clearing:

$$d_t \cdot \Delta t = \sum_i y_{i,t} \cdot \Delta t + \sum_j K_j^{max} \varphi_{j,t} \cdot \pi_j \cdot \Delta t - r_t \cdot \Delta t \quad \forall t$$

> Objective function is non-linear in π_j , everything else is linear Derivatives:

$$\frac{\partial W}{\partial \pi_j} = -c_j^{inv} K_j^{max} - \left(\ln \pi_j + 1 - \ln(1 - \pi_j) - 1\right) K_j^{max} \frac{1}{\beta}$$
$$\frac{\partial^2 W}{\partial \pi_j^2} = -\left(\frac{1}{\pi_j} + \frac{1}{1 - \pi_j}\right) K_j^{max} \frac{1}{\beta} < 0 \quad \forall \pi_j \in (0, 1) \qquad \frac{\partial^2 W}{\partial \pi_j \partial \pi_i} = 0 \quad \forall j \neq i$$
$$\blacktriangleright \text{ Objective function is concave, as are the constraints}$$

Proposition 3 – reformulation with exponential cones

Solution approach

Definition exponential cone:

$$\mathcal{K}_{exp} = \left\{ (x_1, x_2, x_3) \middle| x_1 \ge x_2 e^{\frac{x_3}{x_2}}, x_2 > 0 \right\} \cup \left\{ (x_1, 0, x_3) \middle| x_1 \ge 0, x_3 \le 0 \right\}$$

Note equivalence for key inequality:

$$x_1 \ge x_2 e^{\frac{x_3}{x_2}} \Leftrightarrow \ln(x_1) \ge \ln(x_2) + \frac{x_3}{x_2} \Leftrightarrow x_3 \le x_2 \ln(x_1) - x_2 \ln(x_2)$$

Also

$$\max_{\pi_j} A(\pi_j, \dots) + H(\pi_j) \Leftrightarrow \max_{\pi_j} A(\pi_j, \dots) + E_j + E_j^{cp} | E_j + E_j^{cp} \le H(\pi_j)$$

Then

$$E_j \leq -\pi_j \ln \pi_j \Leftrightarrow (1, \pi_j, E_j) \in \mathcal{K}_{exp}$$

Analoguously

$$E_j^{cp} \le -\pi_j^{cp} \ln \pi_j^{cp} \Leftrightarrow \left(1, \pi_j^{cp}, E_j^{cp}\right) \in \mathcal{K}_{exp}$$

With additional constraint

$$\pi_j + \pi_j^{cp} = 1$$

> Non-linear term in objective function may be replaced by two restrictions on exponential cones > A standard solver, namely MOSEK, may be used to solve the non-linear concave optimization problem

UNIVERSITÄT

DUISBURG ESSEN

First application: stylized German model

Open-Minded

UISBURG

UNIVERSITÄT

Application

- Based on data from Poestges et al. (2019), publically available under zenodo: <u>https://zenodo.org/record/3674005</u>
 - Reference year for weather and demand 2015
 - CO₂ price 100 €/t CO₂
 - Wind energy potentials adjusted to current German law, requiring 2 % of land area to be made available
- Spatial resolution: Germany split in five TSO regions (cf. Figure)
- Temporal resolution: 1 year in 8760 hours
- Investments in the following technologies:
 - CCGT
 - OCGT
 - PV
 - Wind onshore
- No grid restrictions, only small transport fee (0.01 €/MWh)

Energy Markets Scale parameter for heterogeneity $s = \frac{1}{R} = 0.1 \cdot c_j^{inv}$

Computation statistics

Application

- Computations performed on a Notebook running on Windows (13th Gen Intel(R) Core(TM) i7-1365U, 1.80 GHz, 32 GB RAM)
- Software used: GAMS release 46.2.0 & MOSEK solver version 10.1.27

Model	Choice-based ESM	Linear ESM
Variables	394,291	394,231
Constraints	131,471	131,411
Non-zero elements	1,114,986	1,114,866
Exponential cones	20	_
Iterations	108	33
Optimizer time in s	20.0	6.4
Total time in s	25.9	11.9

UNIVERSITÄT

DUISBURG ESSEN

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Application

Capacity PV						
	Total	R_50	R_AM	R_EN	R_TB	R_TN
Choice-based ESM	137	7	38	29	38	26
LP ESM	114	0	0	89	25	0
Max Capacity	988	45	291	143	224	285
Capacity Wind						
	Total	R_50	R_AM	R_EN	R_TB	R_TN
Choice-based ESM	78	38	5	0	1	33
LP ESM	80	45	0	0	0	35
Max Capacity	138	45	21	12	24	35
Capacity gas CCGT Total			Capacity gas OCGT Total			
Choice-based ESM	65				25	
LP ESM	66				25	

Regional energy balances

Application

UNIVERSITÄT DUISBURG ESSEN **Open-**Minded

Cost perspective

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Application

Cost in b€	Choice-based ESM	LP ESM	Relative change	
investment conventional	6.51	6.53	-0.3%	
investment variable RE	18.70	17.56	6.5%	Total transport
load shedding	0.08	0.08	1.4%	CB ESM: 79.5
operations	25.45	25.89	-1.7%	LP ESIVI. 130.0
transport	0.00	0.00	-42.6%	
Total deterministic cost	50.74	50.06	1.4%	
value entropy	2.99	0.00		
Total	47.76	50.06	-4.6%	

Conclusions and next steps

• Modelling framework provides an innovative approach to model distributed electricity systems

UNIVERSITÄT

Open-Minded

UISBURG

- Copes with heterogeneity based on an established **stochastic utility framework**
- First application **highlights differences** to conventional linear programs
- **Results to be explored further** in more detailed applications
- Heterogeneity parameters may be determined from empirical observations

Thank you for your attention!

Christoph Weber

christoph.weber@uni-due.de

References

